Applied and Environmental Microbiology ## Selective Inhibition of Ammonium Oxidation and Nitrification-Linked N 2O Formation by Methyl Fluoride and Dimethyl Ether Laurence G. Miller, M. Denise Coutlakis, Ronald S. Oremland and Bess B. Ward *Appl. Environ. Microbiol.* 1993, 59(8):2457. Updated information and services can be found at: http://aem.asm.org/content/59/8/2457 These include: **CONTENT ALERTS** Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more » Information about commercial reprint orders: http://aem.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ # Selective Inhibition of Ammonium Oxidation and Nitrification-Linked N₂O Formation by Methyl Fluoride and Dimethyl Ether LAURENCE G. MILLER,1* M. DENISE COUTLAKIS,1† RONALD S. OREMLAND,1 AND BESS B. WARD2 Water Resources Division, U.S. Geological Survey, Menlo Park, California 94025, 1 and Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, California 950642 Received 19 February 1993/Accepted 25 May 1993 Methyl fluoride (CH₃F) and dimethyl ether (DME) inhibited nitrification in washed-cell suspensions of Nitrosomonas europaea and in a variety of oxygenated soils and sediments. Headspace additions of CH₃F (10% [vol/vol]) and DME (25% [vol/vol]) fully inhibited NO_2^- and N_2O production from NH_4^+ in incubations of N. europaea, while lower concentrations of these gases resulted in partial inhibition. Oxidation of hydroxylamine (NH₂OH) by N. europaea and oxidation of NO_2^- by a Nitrobacter sp. were unaffected by CH₃F or DME. In nitrifying soils, CH₃F and DME inhibited N_2O production. In field experiments with surface flux chambers and intact cores, CH₃F reduced the release of N_2O from soils to the atmosphere by 20- to 30-fold. Inhibition by CH₃F also resulted in decreased $NO_3^- + NO_2^-$ levels and increased NH_4^+ levels in soils. CH₃F did not affect patterns of dissimilatory nitrate reduction to ammonia in cell suspensions of a nitrate-respiring bacterium, nor did it affect N_2O metabolism in denitrifying soils. CH₃F and DME will be useful in discriminating N_2O production via nitrification and denitrification when both processes occur and in decoupling these processes by blocking NO_2^- and NO_3^- production. Microbial oxidation of NH₄⁺ to NO₂⁻ or NO₃⁻ (nitrification) provides a link between nitrogen mineralization and nitrogen loss through denitrification (21, 39-42). Coupled nitrification and denitrification results in the loss of soil fertilizer nitrogen and a potential hazard to the stratospheric ozone layer through the release of N₂O (7, 9, 10), contributing to the 0.2 to 0.3% per year increase in tropospheric N₂O since preindustrial times (25). Nitrous oxide is a product of both nitrification and denitrification in soils (9, 15, 17, 29) and in pure cultures of nitrifying and denitrifying bacteria (16, 37, 38, 50). Quantifying the contribution of nitrification or denitrification to the N₂O pool or flux is difficult when both processes occur simultaneously (12, 23). However, if N₂O production from nitrification can be specifically inhibited, then the amount of N₂O production from denitrification alone may be determined. Studies of the origin of N₂O may therefore be facilitated by use of specific inhibitors of nitrification. Presently, the best known inhibitors of nitrification, nitrapyrin and C_2H_2 , each have drawbacks to their general use. Nitrapyrin is insoluble in water and must be added with acetone or an alcohol carrier, resulting in the addition of an unwanted carbon substrate (32). Acetylene is a known gaseous inhibitor of denitrification at levels slightly higher than those used to inhibit nitrification (3), requiring detailed examination of the specificity of C_2H_2 for each system under investigation (23). Acetylene also inhibits a number of other important microbial processes and has additional drawbacks that limit its efficacy as a specific nitrification inhibitor (3, 32). We investigated the feasibility of using methyl fluoride (CH₃F) and dimethyl ether (DME) as specific inhibitors of ammonia monooxygenase (AMO) to block the production of NO₂⁻ and N₂O during nitrification. Both gases were previously found to inhibit methane oxidation in soils and cell suspensions of *Methylococcus capsulatus* (33, 34). In a preliminary study (34), both CH₃F and DME blocked NO₃⁻ production and NH₄⁺ loss during soil nitrification without affecting N₂O reductase activity during denitrification. Our results extend this conclusion to additional soils and aquatic sediments and to a pure culture of an ammonium-oxidizing bacterium, demonstrating that these inhibitors are effective agents in discriminating N₂O sources. In addition, these gaseous inhibitors hold promise as tools for evaluating the degree of coupling occurring between nitrification and denitrification in soils and sediments. #### **MATERIALS AND METHODS** Solubility and purity of inhibitor gases. Because of the high aqueous solubilities of CH_3F (1.7 ml/ml), DME (35 ml/ml), and C_2H_2 (0.9 ml/ml), the characterization of soil moisture conditions is required when these gaseous inhibitors are used (8). In general, higher headspace concentrations of inhibitors were used in experiments with slurries and cultures than in experiments with dry soils. CH_3F (minimum purity, 99.0%) and DME (minimum purity, 99.87%) were obtained in lecture bottles from Matheson (Lyndhurst, N.J.). Acetylene was prepared from CaC_2 and water immediately prior to its use. Experiments with bacterial cultures. For examination of the effect of CH₃F and DME on ammonium oxidation and N₂O production, washed-cell suspensions of pure cultures were prepared. The ammonium-oxidizing bacterium *Nitrosomonas europaea* was grown in a semicontinuous batch mode in mineral salts medium containing NH₄⁺ and harvested by filtration (0.2-μm-pore-size Nuclepore filters) during exponential growth (48). Cell suspensions of *N. europaea* were washed twice with sterile, NH₄⁺-free medium, resuspended in NH₄⁺-free medium, and dispensed into ^{*} Corresponding author. Electronic mail address: LGMILLER@RCAMNL.WR.USGS.GOV. [†] Present address: U.S. Geological Survey, Towson, MD 21286. 37-ml serum bottles (total volume, 15 ml; 2.0×10^7 to 3.7×10^7 cells ml $^{-1}$). NH $_4$ Cl or NH $_2$ OH (4.5 µmol; volume, 0.1 ml) was added by use of a pipet prior to stoppering of the bottles. Controls consisted of NH $_4$ +-free medium without cells and amended with the appropriate substrate. Inhibitor gases (CH $_3$ F and DME) were added by use of a syringe at the levels indicated in Results. Incubation was done at room temperature (22 \pm 2°C) with constant shaking (200 rpm) for up to 5 h. A marine NO_2^- -oxidizing bacterium, a *Nitrobacter* sp., was grown in seawater-mineral salts medium in a batch mode, harvested during exponential growth, washed in NO_2^- -free medium, and dispensed into serum bottles as described above. $NaNO_2$ (4.5 μ mol; volume, 0.1 ml) was added by use of a pipet prior to stoppering of the bottles. CH_3F (10% [vol/vol]) or DME (10 and 25% [vol/vol]) was added by use of a syringe to the headspace of some bottles, and the samples were incubated statically at room temperature An anaerobic, selenate-respiring bacterium capable of dissimilatory NO₃⁻ reduction (strain SES-3 [44]) was grown in mineral salts medium containing NO₃⁻. Cells were harvested during exponential growth, washed, and centrifuged twice $(8,000 \times g \text{ for } 10 \text{ min each time})$ with mineral salts medium lacking NO₃⁻, lactate, yeast extract, and vitamins. Final cell suspensions (total volume, 30 ml; equivalent dry weight, 0.4 mg ml⁻¹) were transferred to 57-ml serum bottles, which were then stoppered. These transfers were conducted in an anaerobic glove box. Sodium lactate (final concentration, 10 mM) was added to all bottles except for one control, and a reductant (cysteine sulfide; final concentration, 1 mM) and nitrate (final concentration, 10 mM) were added to all bottles by use of a syringe. Bottles were flushed with an 80:20 mixture of N₂-CO₂ for 10 min prior to the addition of CH₃F (20% [vol/vol]) to the headspace of two bottles. Headspace N₂O and aqueous NO₃-, NO₂-, and NH₄⁺ concentrations were monitored over the course of the incubation (30 h). Experiments with soils. For examination of the effect of CH_3F and DME on N_2O production in soils, bottle incubations were conducted. Methanotrophic soils were collected from the subsurface (depth, 73 to 100 cm) of an agricultural field (32, 33). Soils (10 g; volume, ~7 ml) were dispensed into serum bottles (57 ml), which were then crimp sealed under air with black butyl rubber stoppers. Controls were heat killed by autoclaving (121°C; 2 atm [ca. 203 kPa]) for 1 h. Inhibitors (CH₃F and DME) were injected at the levels indicated in Results. In some experiments, NH₄Cl (40 μ mol) or NH₄NO₃ (50 μ mol) was added by use of a pipet prior to sealing or by use of a syringe after sealing. Soils were incubated statically at 20°C in the dark. Anaerobic soil slurries were prepared by mixing one part soil with two parts deionized water in a blender under flowing nitrogen. Slurries (60 ml) were dispensed into conical flasks (125 ml) and flushed with N₂ for 5 min. NaNO₃ (100 µmol) was added by use of a syringe to each flask prior to a final O₂-free N₂ flush (5 min). CH₃F (5% [vol/vol]) or C₂H₂ (30% [vol/vol]) was added to some flasks, while others were incubated without added gases. Controls consisted of heat-killed (121°C for 1 h) slurries with or without the gaseous inhibitors. Slurries were incubated at 20°C with constant shaking (60 rpm) for 14 days. For determination of the effect of CH_3F and DME on N_2O reductase activity, anaerobic soil incubations with added N_2O were conducted. Soils (10 g) in 57-ml serum bottles were flushed with O_2 -free N_2 for 15 min, shaken, flushed again for 15 min, and preincubated at 21°C for 12 days (to remove NO_3^-) before the addition of CH_3F or DME (1.0% [vol/vol]) to the headspace. N_2O (0.1% [vol/vol]) was added to all bottles, including one containing a heat-killed control, and headspace N_2O concentrations were monitored. Experiments with estuarine sediments. The upper 10 cm of sediment was collected by a diver at a shallow station (2-m depth) in South San Francisco Bay. Sediment with overlying water was transported in sealed glass jars to the laboratory, where experiments were initiated within 1 day. Sediment slurries were prepared by homogenizing one part sediment and one part water. Slurries (40 ml) were dispensed into 250-ml conical flasks under air and incubated at 20°C with rotary shaking (250 rpm) for up to 14 days. Heat-killed controls were prepared by autoclaving (121°C; 2 atm) for 1 h. NH₄Cl (40 µmol) and CH₃F (5% [vol/vol]) were added to some flasks. Headspace N₂O concentrations were monitored during the course of the incubation, while slurries were sacrificed at times corresponding to the beginning, middle, and end of the experiment for the determination of dissolved inorganic nitrogen species. NO₃⁻ + NO₂⁻ and NH₄⁺ concentrations were determined in water separated from sediment by centrifugation $(8,000 \times g)$ for 10 min and then filtration (0.4-µm-pore-size Nuclepore filters). Field experiments with flux chambers. Cylindrical Plexiglas chambers (0.2-m diameter; 4.0-liter volume) were placed over two sites of seasonally exposed lakebed soils along the shoreline of Searsville Lake, Calif. (33). Site A was sandy soil, with a dry surface about 0.5 m above the lake level and 10 m from the lake shoreline, while site B was wet, silty soil nearer the lake shoreline. Site B had been exposed only several weeks earlier by a receding lake level. Some chambers received additions of inhibitors (1% [vol/vol] CH₃F; 5% [vol/vol] C₂H₂) immediately after placement. As an internal standard, sulfur hexafluoride (10⁻⁵ µmol) was added to all chambers and its level monitored over time to assess the integrity of the seal at the soil surface. The chamber headspace was sampled initially and three additional times over a 24-h period by withdrawing 4 ml into glass syringes and sealing the syringes with small rubber septa contained in modified Luer needle hubs, such that subsamples for gas chromatography (GC) analyses could be withdrawn and atmospheric pressure could be maintained. This storage procedure resulted in a <20% change in N₂O concentrations over several hours, and good agreement was found with duplicate samples collected by use of a syringe and stored by water displacement in sealed glass tubes. Experiments with intact cores. Five sediment cores (10-cm diameter; 20-cm length) were collected in butyrate tubes between sites A and B at Searsville Lake. One core was immediately sectioned into 1-cm segments from the surface to 8 cm and sampled for dissolved inorganic nitrogen species (NO₃⁻ + NO₂⁻ and NH₄⁺; see below). The remaining four cores were sealed with rubber stoppers and incubated for 20 to 21 days. Duplicate cores were incubated under a 0.9-liter air headspace with or without added CH₃F (5% [vol/vol]). Sulfur hexafluoride (SF₆) (5.6 \times 10⁻⁶ μ mol) was added to the headspace of all cores as an internal standard. After 20 to 21 days, the four incubated cores were sectioned into 1- or 2-cm segments from the surface to 6 cm. For extraction of gases, sediment (~5 g) was placed in a preweighed 125-ml conical flask containing 35 or 50 ml of 2 M KCl and shaken at 250 rpm for 2 h; headspace analysis by GC was then done (see below). Sediment extracts were centrifuged at $8,000 \times g$ for 10 min, filtered through a 0.45-μm-pore-size Nuclepore TABLE 1. Inhibition of NO₂⁻ and N₂O production by cell suspensions of *N. europaea* during incubations with various levels of CH₃F and DME^a | Addition and % (vol/vol) | NO ₂ - | | N ₂ O | | |--------------------------|---|---------------|---|------------------| | | Produced (µmol h ⁻¹) ^b | Inhibited (%) | Produced (nmol h ⁻¹) ^b | Inhibited
(%) | | None | 0.61 | 0 | 1.05 | 0 | | CH₃F | | | | | | 0.1 | 0.35 | 43 | 0.43 | 67 | | 1.0 | 0.11 | 82 | 0.17 | 96 | | 10 | 0.03 | 96 | 0.16 | 97 | | DME | | | | | | 0.1 | 0.64 | -5 | 1.11 | -7 | | 1.0 | 0.53 | 14 | 0.70 | 38 | | 10 | 0.15 | 75 | 0.26 | 86 | | 25 | 0.05 | 92 | 0.24 | 88 | | No cells | 0 | 100 | 0.13 | 100 | ^a Assay bottles contained NH₄Cl (4.5 μ mol) and (0.7 \pm 0.1) \times 10⁷ cells. ^b Production was nonlinear; the rate was calculated as the linear slope (0 to 1 h) of the best fit of concentration-time data to a logarithmic equation: $y = (a + b) \ln x$. filter, and analyzed for dissolved and adsorbed NH_4^+ and $NO_3^- + NO_2^-$ (49). Analyses. Headspace gases in flasks and chambers were measured by GC. A variable-frequency pulsed (63Ni) electron capture detector (Valco model 140BN) was used for N₂O and SF₆; separation was achieved on a Porapak R column (2.4 m by 0.32 cm [diameter]) with a 20-ml min⁻¹ carrier (5% CH₄; balance, N₂) flow rate and at a 45°C oven temperature. An eight-port injection valve fitted with matched columns was used to prevent C₂H₂ from reaching the detector (36). CH₃F and DME levels were determined by use of a flame ionization detector (HNU model 301) following separation on a Porapak S column (2.4 m by 0.32 cm [diameter]) at 50°C and with a 30-ml min⁻¹ carrier (He) flow rate. Nitrite levels were measured in aqueous samples from incubations of N. europaea and the Nitrobacter sp. by spectrophotometry (45). NO₃⁻ and NO₂⁻ levels were measured in centrifuged aqueous samples from incubations of SES-3 by ion chromatography (35). Ammonium levels were determined by the phenol-hypochlorite method (43), and $NO_3^- + NO_2^-$ levels were determined by flow injection analyses following cadmium reduction of NO_3^- to NO_2^- (22). #### RESULTS Experiments with bacterial cultures. CH_3F and DME inhibited NO_2^- and N_2O production from NH_4^+ during nitrification by washed-cell suspensions of N. europaea (Table 1). Uninhibited cells produced 1.1 μ mol of NO_2^- and 1.8 nmol of N_2O from 4.5 μ mol of NH_4^+ in 4.9 h, but production was nonlinear. To distinguish the initial production rates, we fit the concentration-time data to a logarithmic equation, which was linearized for the period from 0 to 1 h. A cell-free control did not produce NO_2^- and formed <0.2 nmol of N_2O . Increasing headspace concentrations of an inhibitor (0.1 to 10% [vol/vol] CH_3F and 0.1 to 25% [vol/vol] DME) resulted in increasing degrees of inhibition, with the highest inhibitor concentrations resulting in >88% inhibition of both NO_2^- and N_2O production. FIG. 1. Nitrite production from hydroxylamine by *N. europaea* (A) and nitrite consumption by *Nitrobacter* sp. (B) washed-cell suspensions (final cell density, $\sim 10^7$ cells ml⁻¹). Symbols: \bigcirc , no additions; \diamondsuit , 10% (vol/vol) CH₃F; \triangle , 10% (vol/vol) DME; \triangledown , 25% (vol/vol) DME; \square , no cells. Lines represent linear regressions of control data (no additions, A and B; no cells, B). CH₃F and DME did not affect the production of NO₂⁻ from NH₂OH by *N. europaea* (Fig. 1A). Uninhibited cells, as well as those incubated with CH₃F or DME, all produced $4.08 \pm 0.30 \,\mu$ mol of NO₂⁻ (n = 4) from $4.5 \,\mu$ mol of NH₂OH in 2.8 h. CH₃F and DME had no effect on the production of N₂O from NH₂OH in aerobic incubations (12 ± 1 nmol of N₂O produced in $4.8 \, h$; n = 3). CH₃F and DME had no effect on the oxidation of NO₂⁻ by a washed-cell suspension of a *Nitrobacter* sp. (Fig. 1B). Uninhibited cells and those incubated with CH₃F and DME all consumed 4.5 μmol of NO₂⁻ at the same rate over 5 h. N₂O was not detected in any of the experimental bottles. In experiments with the respiratory NO_3^- reducer (SES-3), CH₃F had no effect on the transformation of inorganic nitrogen species during the dissimilatory reduction of 300 μ mol of NO_3^- (data not shown). Cells incubated without an inhibitor as well as duplicate samples containing 20% (vol/vol) CH₃F consumed all of the NO_3^- and produced up to 140 μ mol of NO_2^- (transient), 227 \pm 5 μ mol of NH_4^+ (n=3), and 0.60 \pm 0.15 μ mol of N_2O (n=3) during the course of the incubation (30 h). A control without an electron donor (lactate) did not consume NO_3^- and did not produce NO_2^- , NH_4^+ , or N_2O . Experiments with soils and sediments. Soils amended with 40 μ mol of NH₄⁺ produced up to 1.4 μ mol of N₂O in 14 days (Fig. 2A). Production was completely inhibited by autoclaving and by CH₃F, while samples incubated with C₂H₂ produced a small quantity of N₂O (0.1 μ mol). Headspace FIG. 2. Nitrous oxide production in aerobic soils with 40 μ mol of added NH₄Cl (A) or 50 μ mol of added NH₄NO₃ (B). Symbols: \bigcirc , no additions; \diamondsuit , 5% (vol/vol) CH₃F; \triangle , 15% (vol/vol) C₂H₂; \square , heat-killed control. Time (d) C_2H_2 concentrations remained constant over the 20-day incubation, while the CH_3F concentration decreased by 30% (data not shown). Soils with added NH_4NO_3 (50 μ mol) did not produce N_2O either in controls or in the presence of CH_3F , but C_2H_2 stimulated the formation of a small but significant (P < 0.025) amount of N_2O , presumably from denitrification in anaerobic microsites (Fig. 2B). The efficacies of CH₃F and DME as inhibitors of nitrification-linked N₂O production in soils were examined at several inhibitor concentrations. N₂O production during soil nitrification could be fully inhibited by CH₃F and DME, but CH₃F was more effective than DME at the lowest concentrations applied (0.1% [vol/vol]) (Table 2). Uninhibited soils produced 0.39 μmol of N₂O from 40 μmol of added NH₄⁺ in 14 days, while heat-killed controls produced none. Head-space concentrations of inhibitors remained constant over the first week of the incubations, except for that in 0.1% (vol/vol) DME-amended bottles, which decreased by 30% (data not shown). For determination of whether CH_3F could block nitrification in sediments as well as soils, experiments were conducted with San Francisco Bay sediment slurries. N_2O production in these sediments was inhibited by CH_3F (Table 3). The addition of NH_4^+ to slurries stimulated N_2O production \sim 27-fold (from 0.3 to 8 μ mol), while CH_3F blocked N_2O TABLE 2. N₂O production and percent inhibition during incubations of soil with various levels of CH₃F and DME^a | | N₂O | | | |-----------------------------|------------------------------|---------------|--| | Addition and %
(vol/vol) | Produced (nmol) ^b | Inhibited (%) | | | None | 390 ± 150 | 0 | | | CH ₃ F | | | | | 0.1 | 7 ± 4 | 98 | | | 1.0 | 4 ± 1 | 99 | | | DME | | | | | 0.1 | 270 ± 120 | 30 | | | 1.0 | 3 ± 2 | 99 | | | 10 | 21 ± 30 | 95 | | | Heat-killed control | 1 ± 0 | 100 | | ^a Assay bottles contained NH₄Cl (40 μmol) and 10 g of soil. production in both $\mathrm{NH_4}^+$ -amended and unamended slurries. Elevated levels of $\mathrm{NO_3}^- + \mathrm{NO_2}^-$ were observed in unamended and $\mathrm{NH_4}^+$ -amended flasks (1.5 and 13 μ mol of $\mathrm{NO_3}^-$ and $\mathrm{NO_2}^-$, respectively) after 1 week of incubation. After 2 weeks, $\mathrm{NO_3}^- + \mathrm{NO_2}^-$ concentrations were lower and similar in all flasks, presumably because of microbial consumption. $\mathrm{NH_4}^+$ was consumed in the uninhibited slurries with and without added $\mathrm{NH_4}^+$; in contrast, a net accumulation of $\mathrm{NH_4}^+$ occurred in all flasks amended with $\mathrm{CH_2F}$. The effect of CH₃F and DME on N₂O metabolism associated with denitrification was examined in experiments with anaerobic soil slurries and dry soils. N2O production during denitrification was unaffected by the addition of CH₃F. Uninhibited soil slurries produced levels of N₂O comparable to those produced in the presence of CH₃F (Fig. 3A). However, C₂H₂ caused a 10-fold enhancement of N₂O production, indicating that N_2O reductase was inhibited (1). Heat-killed controls (with or without added CH₃F and C₂H₂) did not produce N₂O. The consumption of added N₂O during denitrification was slightly affected by the addition of CH₃F or DME (Fig. 3B). Uninhibited dry soils consumed N₂O linearly over 5 h at a rate of 7.8 nmol $g^{-1} h^{-1} (n = 18; r^2 =$ 0.93), while those incubated with CH₃F and DME consumed N_2O at rates of 6.8 ($r^2 = 0.92$) and 12 ($r^2 = 0.84$) nmol g^{-1} ¹, respectively. No N₂O consumption was observed in heat-killed controls. TABLE 3. Effect of CH₃F on nitrification-linked production (or consumption) of N₂O, NO₃⁻ + NO₂⁻, and NH₄⁺ in estuarine sediment slurries | Addition | μmol ^a of: | | | | |--|-----------------------|---|------------------------------|--| | Addition | N ₂ O | NO ₃ ⁻ + NO ₂ ⁻ | NH ₄ ⁺ | | | None | 0.30 ± 0.46 | 0.24 ± 0.83 | -0.92 ± 0.33 | | | NH_4^{+b} | 8.00 ± 1.31 | 1.96 ± 1.98 | -25.4 ± 3.07 | | | 5% (vol/vol) CH ₃ F | 0 | 0.37 ± 0.10 | 25.7 ± 2.36 | | | 5% (vol/vol) CH ₃ F
+ NH ₄ +b | 0 | 0.33 ± 0.05 | 28.7 ± 13.6 | | ^a Mean produced in 14 days \pm 1 SD (n=3 slurries). The initial NH₄⁺ concentration was 7.44 μ mol; the initial NO₃⁻ + NO₂⁻ concentration was 0.68 μ mol. A minus sign denotes consumption. ^b Mean N₂O produced in 14 days \pm 1 SD (n = 3). ^b 40.0 μmol of NH₄Cl added; slurry volume, 40 ml. FIG. 3. Nitrous oxide production in anaerobic soils with 100 μ mol of added NO₃⁻ (A) and N₂O consumption in anaerobic soils with ~0.7 μ mol of added N₂O (B). Symbols: \bigcirc , no additions; \bigcirc , 1% (vol/vol) DME; ∇ , 30% C₂H₂, right-hand vertical axis in panel A; \square , heat-killed control. Field experiments with flux chambers. The accumulation of N_2O in chamber headspaces was inhibited by the addition of CH_3F . At site A, chambers without additions accumulated $0.51 \pm 0.36~\mu mol$ of N_2O in 21 h, while those with CH_3F added did not accumulate N_2O (Fig. 4A). At site B, chambers without additions accumulated $0.96 \pm 0.04~\mu mol$ of N_2O in 23 h, while chambers with CH_3F added accumulated half as much N_2O (Fig. 4B). Acetylene markedly stimulated N_2O accumulation at site B (data not shown). Chambers without additions accumulated $0.76 \pm 0.37~\mu mol$ of N_2O in 23 h, while those with C_2H_2 added accumulated $21 \pm 8.0~\mu mol$. Intact-core incubations. N_2O production during intact-core incubations was initially inhibited by CH_3F (data not shown). Net N_2O production (0.19 \pm 0.08 μ mol in 20 days) occurred in cores without additions, while net N_2O consumption ($-0.11 \pm 0.03 \mu$ mol in 21 days) occurred in cores with added CH_3F . Constant SF_6 headspace concentrations indicated that no leaks existed between the cores and outside air. The initial soil content of $NO_3^- + NO_2^-$ ranged from FIG. 4. Nitrous oxide accumulation in flux chambers at two sites (A = high and dry; B = low and wet) on the Searsville Lake shoreline. Symbols: \bigcirc , no additions; \diamondsuit , 1% (vol/vol) CH₃F. 0.39 µmol g⁻¹ at the surface to below the detection limit (<0.02 µmol g⁻¹) at depths below 4 cm (Fig. 5A). Final NO₃⁻ + NO₂⁻ contents in cores without additions were similar at the surface (0.38 \pm 0.04 µmol g⁻¹) but decreased to 0.09 \pm 0.02 µmol g⁻¹ at depths of 4 to 6 cm. Cores with added CH₃F were strongly depleted of NO₃⁻ + NO₂⁻ at the surface and had no detectable NO₃⁻ + NO₂⁻ below 1.8 cm after 21 days. The initial soil NH₄ + concentration was below the detection limit (<0.3 µmol g⁻¹) at all depths (Fig. 5B). Final NH₄ + concentrations in cores without additions were only slightly elevated at the surface (0.9 \pm 0.5 µmol g⁻¹) and were below the detection limit at deeper depths. Cores with added CH₃F had markedly elevated NH₄ + concentrations, ranging from 40 \pm 0.5 µmol g⁻¹ at the surface to 1.5 \pm 0.7 µmol g⁻¹ at depths of 4 to 6 cm. Final CH₃F contents in the soil column ranged from 0.03 \pm 0.02 µmol g⁻¹ at the surface to 0.06 \pm 0.02 µmol g⁻¹ at depths of 4 to 6 cm and averaged 0.05 \pm 0.02 µmol g⁻¹ (n = 10). #### **DISCUSSION** CH₃F and DME blocked NO₂⁻ and N₂O production (nitrification) from NH₄⁺ in experiments with *N. europaea* (Table 1). Inhibition occurred immediately. The inhibitors appeared to act at the level of the AMO enzyme because nitrite production from NH₂OH was unaffected by inhibitor FIG. 5. Nitrate plus nitrite (A) and ammonia and CH_3F (B) profiles in the soil column of Searsville Lake. Solid symbols represent concentrations observed at the time at which the cores were collected. Open symbols represent concentrations observed after 3 weeks of incubation. Symbols: \bigcirc , uninhibited; \diamondsuit , 5% added CH_3F . concentrations that completely blocked NH₄⁺ oxidation (Fig. 1A). Likewise, both inhibitors failed to block NO₂⁻ uptake during the final oxidative step of nitrification, NO₃⁻ production by a *Nitrobacter* sp. (Fig. 1B). These results lead us to identify both CH₃F and DME as specific inhibitors of AMO enzyme activity. CH₃F and DME blocked N₂O production in aerobic soil incubations (Table 2). Soils amended with NH₄Cl or NH₄NO₃ produced N₂O in the presence of C₂H₂ but not CH₃F (Fig. 2), suggesting that denitrification within anaerobic microsites occurred and was unaffected by CH₃F. Preformed NO₃⁻ within the soil may have provided a substrate for denitrification in the NH₄Cl-amended incubations (soil water below 100 cm in these experiments contained 0.3 mM NO₃⁻, data not shown). CH₃F blocked N₂O production (with or without added NH₄Cl) in estuarine sediments (Table 3). Ammonium losses and NO₃ $^-$ + NO₂ $^-$ increases were inhibited in flasks amended with CH₃F relative to flasks without the inhibitor. However, only the results from the NH₄ $^+$ addition experiments were unequivocal, because denitrification of up to 13.0 μ mol of NO₃ $^-$ + NO₂ $^-$ formed by 1 week of the experiment occurred in flasks without the inhibitor. Neither CH₃F nor DME affected the production or consumption of N₂O during reductive nitrogen transformations. Dissimilatory nitrate reduction by SES-3 resulted in the consumption of added NO₃⁻ commensurate with the production of NO₂⁻, NH₄⁺, and N₂O. CH₃F had no effect on the rate of these transformations. By contrast, Kaspar and Tiedje (24) reported that C₂H₂ inhibited both NO₂⁻ reduction to NH₄⁺ and N₂O production during dissimilatory reduction in the bovine rumen. Denitrification in soil slurry experiments produced N₂O from added NO₃⁻, and this production also was not influenced by the presence of CH₃F. Because N₂O production was stimulated by the addition of C_2H_2 , we suggest that CH_3F does not block N_2O reductase as C_2H_2 does (1, 51). To determine the effect of CH₃F and DME on N₂O reductase activity in intact soils, we applied a procedure previously developed for sediments containing low NO₃⁻ levels whereby the consumption of a small amount of added N₂O is monitored over time (30). However, in situ soil NO₃⁻ concentrations were sufficiently high (>0.3 mM) to require substantial preincubation under anaerobic conditions so that N₂O production from NO₃⁻ could be eliminated. N₂O consumption rates were similar in amended and unamended flasks following preincubation (Fig. 3B), further suggesting that neither CH₃F nor DME blocks N₂O reductase activity. The conclusion that CH₃F and DME are specific inhibitors of AMO and are "transparent" to the reductive transformations of nitrogenous compounds renders them extremely useful in studies of the source and fate of N₂O in complex systems in which both nitrification and denitrification are occurring. We tested this utility with chamber experiments, the results of which, from Searsville Lake, provided sufficient information to separate the sources of N₂O from two sites that differed primarily in soil moisture content. Nitrification only occurred at site A, the drier of the two soils. We conclude that all of the N₂O flux (15 \pm 7 μ mol m⁻² day⁻¹) originated from the nitrification of ammonia because the flux was completely inhibited by the addition of CH₃F (Fig. 4). The ammonia concentration in the soil was low (Fig. 5), so the level of N₂O flux due to nitrification in the soil was also low. Nitrification and denitrification both occurred at site B. The level of N_2O flux $(28 \pm 2 \mu mol m^{-2} day^{-1})$ was higher than that at site A; however, only half of that flux was inhibited by CH₃F. The residual N₂O flux (13 \pm 7 μ mol m⁻² day⁻¹) was derived from the denitrification of preexisting NO₃⁻ in the soil. The soil NO₃⁻ concentration was high (Fig. 5), so the low level of N₂O flux resulted from high N₂O reductase activity (6). High N_2O reductase activity was corroborated by high N_2O flux (770 ± 280 μ mol m⁻² day⁻¹) in chambers amended with C_2H_2 at site B. Nitrous oxide fluxes in Searsville Lake soils were similar in magnitude to fluxes reported for dry tropical soils (16 $\mu mol\ m^{-2}\ day^{-1}$) (47), lake sediments (17 $\mu mol\ m^{-2}\ day^{-1}$) (40), and coastal marine sediments (44 $\mu mol\ m^{-2}\ day^{-1}$) (41). However, these previous studies could only rely on a general characterization of the redox state of the environment to distinguish the process (nitrification or denitrification) responsible for the N_2O flux. We infer, using a specific inhibitor of nitrification, that denitrification contributes about half of the N_2O flux at a wet soil site and is unimportant at a dry soil site. We observed similar effects of CH₃F on N_2O flux during intact-core incubations of Searsville Lake soils collected between sites A and B. N_2O was produced by nitrification during the first 6 days of the incubation (0.32 \pm 0.04 μ mol), and >80% of this N_2O flux could be inhibited by CH₃F (data not shown). Nitrite and nitrate are products of nitrification in soils and sediments and are substrates for dissimilatory processes, including denitrification (28, 31). Nitrate consumed during denitrification may be derived from outside the zone of denitrification, or its production and consumption may be coupled, as in the suboxic water columns of oceans and lakes (11, 14) and, more commonly, in surface sediments (13, 19, 21, 27, 31, 36, 40, 46) and soils (18, 26). If NO_2^- and NO₃ production from nitrification can be eliminated without affecting dissimilatory processes, then assessment of these reductive processes can be made independently of ongoing NO₂⁻ and NO₃⁻ production. In addition, the degree of coupling (i.e., the extent to which nitrification contributes NO₂⁻ and NO₃⁻ for denitrification) may be determined by inhibiting nitrification and monitoring the effects of continued denitrification. We assessed coupling by inhibiting nitrification during intact-core incubations of Searsville Lake soils (Fig. 5). Uncoupling of nitrification and denitrification resulted in a net loss of $NO_3^- + NO_2^-$ over 3 weeks because of a diminished nitrate supply from nitrification and continued denitrification. Nitrogen was lost as N_2O and presumably as N_2 . This loss was accompanied by a much larger increase in the level of ammonia resulting from the inhibition of NH_4^+ oxidation and a continued ammonia supply. The mass deficit (ammonia increase minus $NO_3^- + NO_2^-$ decrease) represents the potential nitrification-coupled denitrification if the uninhibited cores were at the steady state. This estimation scheme would overestimate potential coupling if N_2O loss during nitrification were significant. Coupling of nitrification and denitrification has been invoked to explain the high rates of denitrification in sediments in which the supply of nitrate is limited (4) and also anomolously high pore water concentrations of dissolved N_2 (2) and $NO_3^- + NO_2^-$ (19). Uncoupling of nitrification and denitrification has been invoked to explain the net fluxes of nitrate out of sediments in which denitrification is occurring (5, 20, 40). We conclude that the use of specific inhibitors of nitrification to determine the degree of coupling under these and similar circumstances shows promising results. Additionally, both CH_3F and DME can be used as alternatives to nitrapyrin and C_2H_2 in studies of nitrification by use of the difference between inhibited and uninhibited NH_4^+ fluxes in aquatic sediments (42). #### **ACKNOWLEDGMENTS** We thank C. Culbertson, E. Horgan, J. Switzer-Blum, and P. Blunden for laboratory assistance. J. Caffrey, D. Hammond, T. Duda, and F. Parchaso were invaluable in the field. We thank N. Chiariello for access to the Jaspar Ridge Biological Preserve and Searsville Lake. The manuscript benefited from reviews by J. Caffrey, D. Capone, P. Matson, and two anonymous reviewers. #### REFERENCES - Balderston, W. L., B. Sherr, and W. J. Payne. 1976. Blockage by acetylene of nitrous oxide reduction in *Pseudomonas perfecto*marinus. Appl. Environ. Microbiol. 31:504-508. - Barnes, R. O., K. K. Bertine, and E. D. Goldberg. 1975. N₂:Ar, nitrification and denitrification in southern California borderland basin sediments. Limnol. Oceanogr. 20:962-970. - Bédard, C., and R. Knowles. 1989. Physiology, biochemistry, and specific inhibitors of CH₄, NH₄⁺, and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53:68-84. - Bender, M., K. A. Fanning, P. N. Froelich, G. R. Heath, and V. Maynard. 1977. Interstitial nitrate profiles and oxidation of sedimentary organic matter in the eastern, equatorial Atlantic. Science 198:605-609. - Binnerup, S. J., K. Jensen, N. P. Revsbech, M. H. Jensen, and J. Sørensen. 1992. Denitrification, dissimilatory reduction of nitrate to ammonium, and nitrification in a bioturbated estuarine sediment as measured with ¹⁵N and microsensor techniques. Appl. Environ. Microbiol. 58:303-313. - Blackmer, A. M., and J. M. Bremner. 1976. Potential of soil as a sink for atmospheric nitrous oxide. Geophys. Res. Lett. 3:739-742. - Blackmer, A. M., J. M. Bremner, and E. L. Schmidt. 1980. Production of nitrous oxide by ammonium-oxidizing chemoautotrophic microorganisms in soil. Appl. Environ. Microbiol. 40:1060-1066. - 8. Braker, W., and A. L. Mossman. 1980. Matheson gas data book, 6th ed. Matheson Co., Lyndhurst, N.J. - Bremner, J. M., and A. M. Blackmer. 1978. Nitrous oxide: emission from soils during nitrification of fertilizer nitrogen. Science 199:295-296. - Cicerone, R. J., J. D. Shetter, D. H. Stedman, T. J. Kelly, and S. C. Liu. 1978. Atmospheric N₂O: measurements to determine its sources, sinks, and variations. J. Geophys. Res. 83:3042– 3050. - Codispoti, L. A., and J. P. Christensen. 1985. Nitrification, denitrification, and nitrous oxide cycling in the eastern tropical South Pacific ocean. Mar. Chem. 16:277-300. - Davidson, E. A., W. T. Swank, and T. O. Perry. 1986. Distinguishing between nitrification and denitrification as sources of gaseous nitrogen production in soils. Appl. Environ. Microbiol. 52:1280-1286. - Dodds, W. K., and R. D. Jones. 1987. Potential rates of nitrification and denitrification in an oligotrophic freshwater sediment system. Microb. Ecol. 14:91-100. - 14. Downes, M. T. 1991. The production and consumption of nitrate in an eutrophic lake during early stratification. Arch. Hydrobiol. 122-257-274 - 15. Firestone, M. K., R. B. Firestone, and J. M. Tiedje. 1980. Nitrous oxide from soil denitrification: factors controlling its biological production. Science 208:749-751. - 16. Focht, D. D. 1974. The effect of temperature, pH, and aeration on the production of nitrous oxide and gaseous nitrogen—a zero-order kinetic model. Soil Sci. 118:173–179. - 17. Goreau, T. J., W. A. Kaplan, S. C. Wofsy, M. B. McElroy, F. W. Valois, and S. W. Watson. 1980. Production of NO₂⁻ and N₂O by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40:526-532. - Groffman, P. M. 1985. Nitrification and denitrification in conventional and no-tillage soils. Soil Sci. Soc. Am. J. 49:329-334. - Grundmanis, V., and J. W. Murray. 1977. Nitrification and denitrification in marine sediments from Puget Sound. Limnol. Oceanogr. 22:804-813. - Hammond, D. E., C. F. Fuller, D. Harmon, B. Hartman, M. Korosec, L. G. Miller, R. Rea, S. Warren, W. Berelson, and S. W. Hager. 1985. Benthic fluxes in San Francisco Bay. Hydrobiologia 129:69-90. - Jenkins, M. C., and W. M. Kemp. 1984. The coupling of nitrification and denitrification in two estuarine sediments. Limnol. Oceanogr. 29:609-619. - 22. Johnson, K. S., and R. L. Petty. 1983. Determination of nitrate and nitrite in seawater by flow injection analysis. Limnol. Oceanogr. 28:1260–1266. - Jørgensen, K. S., H. B. Jensen, and J. Sorensen. 1984. Nitrous oxide production from nitrification and denitrification in marine sediment at low oxygen concentrations. Can. J. Microbiol. 30:1073-1078. - Kaspar, H. P., and J. M. Tiedje. 1981. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene. Appl. Environ. Microbiol. 41:705– 709. - Khalil, M. A. K., and R. A. Rasmussen. 1992. The global sources of nitrous oxide. J. Geophys. Res. 97:14651–14660. - Khyder, I. I., and C. M. Cho. 1983. Nitrification and denitrification of nitrogen fertilizers in a soil column. Soil Sci. Soc. Am. J. 47:1134-1139. - Klingensmith, K. M., and V. Alexander. 1983. Sediment nitrification, denitrification, and nitrous oxide production in a deep arctic lake. Appl. Environ. Microbiol. 46:1084–1092. - Koike, I., and A. Hattori. 1978. Denitrification and ammonium formation in anaerobic coastal sediments. Appl. Environ. Microbiol. 35:278-282. - Lipschultz, F., O. C. Zafiriou, S. C. Wofsy, M. B. McElroy, F. W. Valois, and S. W. Watson. 1981. Production of NO and N₂O by soil nitrifying bacteria. Nature (London) 294:641-643. - Miller, L. G., R. S. Oremland, and S. Paulsen. 1986. Measurement of nitrous oxide reductase activity in aquatic sediments. Appl. Environ. Microbiol. 51:18-24. - Nishio, T., I. Koike, and A. Hattori. 1983. Estimates of denitrification and nitrification in coastal and estuarine sediments. Appl. Environ. Microbiol. 45:444-450. - Oremland, R. S., and D. G. Capone. 1988. Use of specific inhibitors in biogeochemistry and microbial ecology. Adv. Microb. Ecol. 10:285-383. - 33. Oremland, R. S., and C. W. Culbertson. 1992. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature (London) 356:421-423. - Oremland, R. S., and C. W. Culbertson. 1992. Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation. Appl. Environ. Microbiol. 58:2983-2992. - Oremland, R. S., L. G. Miller, and M. J. Whiticar. 1987. Sources and flux of natural gases from Mono Lake, California. Geochim. Cosmochim. Acta 51:2915-2929. - Oremland, R. S., C. Umberger, C. W. Culbertson, and R. L. Smith. 1984. Denitrification in San Francisco Bay intertidal - sediments. Appl. Environ. Microbiol. 47:1106-1112. - 37. Payne, W. J. 1973. Reduction of nitrogenous compounds by microorganisms. Bacteriol. Rev. 37:409-452. - Ritchie, G. A. F., and D. J. D. Nicholas. 1972. Identification of the sources of nitrous oxide by oxidative and reductive processes in *Nitrosomonas europaea*. Biogeochem. J. 126:1181– 1191. - Seitzinger, S., S. Nixon, M. E. Q. Pilson, and S. Burke. 1980. Denitrification and N₂O production in near-shore sediments. Geochim. Cosmochim. Acta 44:1853-1860. - Seitzinger, S. P. 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol. Oceanogr. 33:702-724. - Seitzinger, S. P., S. W. Nixon, and M. E. Q. Pilson. 1984. Denitrification and nitrous oxide production in a coastal marine ecosystem. Limnol. Oceanogr. 29:73-83. - 42. Sloth, N. P., L. P. Nielsen, and T. H. Blackburn. 1992. Nitrification in sediment cores measured with acetylene inhibition. Limnol. Oceanogr. 37:1108-1112. - Solórzano, L. 1969. Determination of ammonia in natural waters by the phenolhypochlorate method. Limnol. Oceanogr. 14:799– 801 - Steinberg, N. A., J. Switzer-Blum, L. Hochstein, and R. S. Oremland. 1992. Nitrate is a preferred electron acceptor for growth of freshwater selenate-respiring bacteria. Appl. Environ. Microbiol. 58:426-428. - Strickland, J. D. H., and T. R. Parsons. 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Board Can. 67:77-80 - Vanderborght, J.-P., and G. Billen. 1975. Vertical distribution of nitrate concentration in interstitial water of marine sediments with nitrification and denitrification. Limnol. Oceanogr. 20:953– 961. - Vitousek, P., P. Matson, C. Volkmann, J. M. Maass, and G. Garcia. 1989. Nitrous oxide flux from dry tropical forests. Global Biogeochem. Cycles 3:375-382. - 48. Ward, B. B. 1985. Light and substrate concentration relationships with marine ammonium assimilation and oxidation rates. Mar. Chem. 16:301-316. - Willis, R. B., and C. E. Gentry. 1987. Automated method for determining nitrate and nitrite in water and soil extracts. Commun. Soil Sci. Plant Anal. 18:625-636. - Yoshida, T., and M. Alexander. 1970. Nitrous oxide formation by *Nitrosomonas europaea* and heterotrophic microorganisms. Soil Sci. Soc. Am. Proc. 34:880–882. - Yoshinari, T., R. Hynes, and R. Knowles. 1977. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol. Biochem. 9:177-183.