The inhibition of N2O production by ocean acidification in cold temperate and polar waters

Andrew P. Rees a,*, Ian J. Brown a, Amal Jayakumar b, Bess B. Ward b

a Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
b Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ 08544, United States

ARTICLE INFO

Available online 17 December 2015

Keywords:
Ocean acidification
Nitrous oxide
Ammonia oxidising archaea
Ammonia
Atlantic
Arctic
Antarctic

ABSTRACT

The effects of ocean acidification (OA) on nitrous oxide (N2O) production and on the community composition of ammonium oxidizing archaea (AOA) were examined in the northern and southern sub-polar and polar Atlantic Ocean. Two research cruises were performed during June 2012 between the North Sea and Arctic Greenland and Barent Seas, and in January–February 2013 to the Antarctic Scotia Sea. Seven stations were occupied in all during which shipboard experimental manipulations of the carbonate chemistry were performed through additions of NaHCO3 to the partial pressure of atmospheric CO2 result in proportional decrease equates to an increase in acidity of 26% and further decrease in pH will have direct (e.g. the increase in N2O and CO2 fixation by Trichodesmium) and indirect (e.g. the increase in shallow water remineralisation associated with a reduced ballast effect; Hofmann and Schellnhuber, 2005) impacts on microbial nutrient cycling. It is considered that these effects may fundamentally alter current biogeochemical cycles (e.g. Codispoti, 2010).

1. Introduction

Anthropogenic activities currently add 10 PgC per year to the atmosphere as CO2. The change in atmospheric CO2 from ~280 ppm (ppm) in pre-industrial times to 395 ppm in 2013 (Le Quéré et al., 2014) has impacted the earth system on several scales. The oceans and atmosphere are intimately linked so that changes in dissolved CO2 in the marine environment. As a result of this, the rise of global temperatures due to an enhanced greenhouse effect has been buffered by the exchange of approximately 25% of anthropogenic CO2 into the oceans (Le Quéré et al., 2014) and it is this condition that has resulted in a profound change to the ocean carbonate chemistry and the phenomenon of ocean acidification (OA) (Raven et al., 2005). As a consequence pH has decreased by 0.0011–0.0024 units per year for the last two decades (Rhein et al., 2013), so that oceanic pH is on average ~0.1 units lower than it was prior to the industrial revolution. This pH decrease equates to an increase in acidity of 26% and further increases are predicted. Projections afforded by the current generation (CMIP5) of model-based scenarios (Moss et al., 2010) indicate decreasing ocean pH of between 0.06 and 0.33 units for the 2090s relative to the 1990s for “high mitigation” RCP2.6 and the “business as usual” RCP8.5 scenarios respectively (Bopp et al., 2013; Ciais et al., 2013). Based on our current understanding of microbial biogeochemistry, it is expected that elevated oceanic pCO2 and the subsequent decrease in pH will have direct (e.g. the increase in N2 and CO2 fixation by Trichodesmium; Hutchins et al., 2007) and indirect (e.g. the increase in shallow water remineralisation associated with a reduced ballast effect; Hofmann and Schellnhuber, 2009) impacts on microbial nutrient cycling. It is considered that these effects may fundamentally alter current biogeochemical cycles (e.g. Codispoti, 2010).

N2O is a trace gas whose atmospheric concentration is increasing at a mean rate of ~0.75 ppb yr−1 (Hartmann et al., 2007).
It is a greenhouse gas with a global warming potential on a 100 year timescale of approximately 300 times that of CO₂ (Ramaswamy et al., 2001) and it contributes significantly to stratospheric ozone depletion (Ravishankara et al., 2009). Though the N₂O concentration in most of the surface of the global ocean is in close equilibrium with the atmosphere (Nevison et al., 1995), the oceans contribute about 50% of the natural N₂O source to the atmosphere (Bange, 2006) and there is a fine balance between the oceans acting as net producer or consumer of N₂O. Environmental effects associated with a changing climate, which include rising temperatures, oxygen depletion and ocean acidification are quite likely to impact the level of this equilibrium (Codispoti, 2010).

Nitrous oxide is biologically produced through three processes: nitrification involves the two stage aerobic oxidation of NH₄⁺ through NO₂⁻ to NO₃⁻, where the release of N₂O as a by-product is dependent on the ambient O₂ concentration (Goreau et al., 1980; Loescher et al., 2012). Denitrification is the anaerobic transformation of NO₃⁻ into N₂ which has N₂O as an intermediate. In the third route, nitrifier-denitrification, N₂O can be formed during the reduction of NO₂⁻ via nitric oxide to N₂O. In the open oceans nitrification is the dominant mechanism for the production of N₂O (Freing et al., 2012), and in the limited number of studies that have been reported, this process has been shown to be particularly sensitive to OA in sub-surface marine waters. Huesemann et al. (2002) found a linear reduction in nitrification rate with high additions of CO₂, so that at pH 6.5, nitrification was reduced by up to 90% of the natural condition. That experiment was more relevant to the effects associated with CO₂ disposal than with levels of OA predicted for the coming century. In a study where pH was manipulated between 8.09 and 7.42 at several locations in the Pacific and Atlantic, Beman et al. (2011) showed unequivocal evidence for an inhibitory effect of short term OA on nitrification. Kitidis et al. (2011) manipulated conditions of pH between ambient and 6.5 for water column samples from the English Channel and found that ammonium oxidation rate decreased with decreasing pH to near complete inhibition at pH 6.5.

It has been hypothesized that nitrification rates may be altered by increasing OA either directly, by impacting on microbial physiology or community composition, or indirectly by changes to the supply of organic material (Codispoti, 2010), Hutchins et al. (2009) speculated that increasing levels of CO₂ may lead to an increase in autotrophic nitrification rates through a reduction of CO₂ limitation or CO₂ fertilization effect. To date this effect has not been observed for the open ocean and the limited number of studies have showed some equivocality in their findings. Clark et al. (2014) performed an investigation of OA on nitrification and N₂O in near surface (~5 m) waters of the NW European shelf seas. The absence of any relationship between OA and N₂O observed is, in part, attributed to the oxygenated status of these waters and the low production of N₂O expected. Clark et al. also observed variability in the impact of OA on nitrification which did not allow a relationship or mechanistic understanding of the relationship between OA and nitrification to be developed. In a study of estuarine and near coastal waters of Narragensett Bay, Fulweiler et al. (2011) found that nitrification rates increased along decreasing natural gradients of pH. Whilst not dismissing the CO₂ fertilisation effect, Fulweiler et al. concluded that a combination of environmental conditions was likely to be the biggest driver influencing nitrification. The decrease in rates could be associated with change in the microbial community possibly as a result of competitive stress to compete for available NH₄⁺/NH₃ or as a result of reduced NH₃, the favored substrate for the first stage of nitrification (Ward, 2008a). The NH₄⁺:NH₃ equilibrium has a pKₐ of ~9.2, favouring NH₄⁺ in an acidifying ocean.

Changes in the microbial ammonium oxidising community composition as a result of changing OA have been reported by Bowen et al. (2013) who saw greater changes in assemblage composition and abundance of ammonium oxidising bacteria (AOB) than of ammonium oxidising archaea (AOA). Whilst both AOB and AOA are found throughout the oceans and produce N₂O (Santoro et al., 2011; Loescher et al., 2012) AOA are considered to be the principal nitrifying organisms (Wuchter et al., 2006).

To our knowledge, there are no reports to date which confirm the inhibition of N₂O production by OA, although the limited evidence from studies on nitrification indicate that this is to be expected. Decreasing oceanic oxygen and decreasing ballast effect (sinking rate of particles) are both predicted to increase the release of N₂O from nitrification in a future ocean (Codispoti, 2010; Gehlen et al., 2011) and so prediction of the overall N₂O inventory and net emissions will prove problematic. Beman et al. (2011) performed an indicative budget for N₂O production from nitrification, which suggested that a decrease in nitrification between 3% and 44% (the range indicated by Beman for the next 20 to 30 years) could result in reduced N₂O emissions comparable to all current N₂O production from fossil fuel combustion and industrial processes.

Here we report on two studies (Tyrrell et al., 2016) performed to investigate the impact of OA on N₂O production and AOA distribution as a contribution to the United Kingdom Ocean Acidification (UKOA) program. Experiments were performed at ocean stations (E01–E05) during cruise JR271 of the RRS James Clark Ross between the North Sea and Arctic Ocean in June 2012, and at stations (B03 and B04) during cruise JR274 to the Southern Ocean in January–February 2013 (Fig. 1).

2. Methods

Seawater was collected from Niskin bottles deployed on a titanium frame at the base of the surface mixed-layer defined by the temperature profile (except for E04). The Niskin bottles were transferred to a positive pressure Class-100 filtered trace metal clean container to avoid contamination. Unfiltered water was dispensed into 4.5 L polycarbonate incubation bottles and the bottles were closed pending carbonate chemistry manipulation. Single experimental bottles were individually manipulated to achieve a range of 4 different target pCO₂ levels (ambient, 550, 750 and 1000 µatm), according to the initial carbonate chemistry of the seawater at the time of the water collection. The manipulation of the carbonate system was achieved through additions of NaHCO₃ – HCl (Borowitzka, 1981; Gattuso and Lavigne, 2009; Schulz et al., 2009) and immediately verified by total alkalinity (TA) and DIC analyses. Values of pCO₂ and pH (total scale) were determined using CO2sys (Lewis and Wallace, 1998). Following manipulation of pCO₂, bottles were closed with PTFE backed butyl septa before being further sealed with parafilm and incubated.

Tests have been performed previously to confirm the validity of this approach and to test the integrity of the polycarbonate bottles to N₂O diffusion. At six positions on a transect through the Atlantic Ocean between the UK and the Falkland Islands, replicate bottles (2–4) were filled with seawater and poisoned with the addition of 1 ml saturated HgCl₂ and incubated in the dark at collection temperature. N₂O concentration was determined on collection, and thereafter triplicate analyses of N₂O were made at several time points over 6 days. N₂O concentration remained stable during each of these storage tests, the coefficient of variation varied between 1.3% and 5.2% (mean 3.9%, n=16 time points × 3 analyses). F tests between N₂O in killed samples and initial concentrations, and between killed samples and the expected (atmospheric equilibrium) concentration confirmed 86% and 87% similarity in variance respectively.

During this study, N₂O concentration was determined in triplicate on samples first prepared (T0) and after 48 h (T48) of
incubation. Subsamples from the incubations were filtered for determination of AOA at T0 and at several time points afterwards. Incubations were performed in the dark within a purpose-built experimental laboratory container allowing precise temperature control. The temperature was adjusted to the in situ value at the time of the water collection. Temperature within a dummy incubation bottle was monitored using a traceable thermometer, while two recording thermometers were used to monitor air temperature in the incubator. Samples were also collected for N2O analysis from CTD casts performed at each of the experimental stations during JR271 only.

2.1. N2O analysis

Samples were collected using acid cleaned Tygon tubing directly from CTD Niskin bottles or by siphoning from 4.5 L incubation bottles into 1 L borosilicate flasks. Single samples were taken from CTD bottles and triplicates from the incubated sample. Samples were overfilled in order to expel air bubbles, poisoned with 200 µL of saturated HgCl2 solution and temperature equilibrated at 25.0 ± 0.5 °C. In all cases samples were analyzed within 8 h of collection. N2O was determined by single-phase equilibration gas chromatography with electron capture detection similar to that described by Upstill-Goddard et al. (1996). Each individual sample was calibrated against three certified (±5%) reference standards of 287, 402 and 511 ppb (Air Products Ltd.) which are traceable to NOAA WMO-N2O-X2006A scale for N2O mole fractions. Mean instrument precision from daily, triplicate analyses of standards was 0.95%. Concentrations of N2O in seawater were calculated from solubility tables of (Weiss and Price, 1980) at equilibration temperature (∼25 °C) and salinity. All N2O data from this study are available from the British Oceanographic Data Centre according to http://dx.doi.org/10.5285/268df3d3b-dcc6-3f4a-e053-6c86abc0c2f9.

2.2. amoA AOA microarray

The array (BC016) was developed following the archetype array approach described previously (e.g. Ward and Bouskill, 2011; Bowen et al., 2013), with 90-mer oligonucleotide probes. Each probe included an amoA-specific 70-mer region and a 20-mer control region (5’-GCTACTAGCTAGGCTAG-3’) bound to a glass slide. The design and spotting of the probes have been described previously (Bulow et al., 2008). Using an established algorithm (Bulow et al., 2008), 99 different archetypes were identified representing 8296 archaeal amoA sequences, which had been aligned and analyzed by Biller et al. (2012). The Archetype probes are numbered according to their representation in the database; of the > 8000 sequences aligned by Biller et al. (2012), the largest number of them, 1191 are represented by AOA1, 1149 by AOA2 and 795 by AOA3, and so forth. The probe accession numbers and sequences are listed in Table S1.

2.3. Target preparation, microarray hybridization, and data analysis

Seawater samples (up to 8 L) were filtered onto 0.2 µm pore size Sterivex filters (Millipore, Billerica, MA) using a peristaltic pump, and filters were flash frozen in liquid nitrogen and stored at −80 °C. Total DNA and RNA were extracted from Sterivex filters using the AllPrep DNA/RNA Kit (Qiagen Sciences) with slight modifications (as in Ward, 2008b) to the manufacturer’s instructions. The extraction procedures were performed twice on each Sterivex filter in order to maximize the DNA yield. cDNA was made from the RNA immediately upon purification using the Superscript III Kit (Life Technologies) following the manufacturer’s instructions after concentrating the RNA extract using MinElute columns (Qiagen Sciences).

Archaeal amoA genes were amplified from the DNA and cDNA using primers Arch-amoAR (5’-STAATGCTGCTAGTTAGCAGC-3’) and Arch-amoAF (5’-GGGCTCATACCTGTTATGT-3’) and protocols as described by Francis et al. (2005). DNA and cDNA from T0 and TF (TF=T final=96 h for all five Arctic experiments, 144 h for Antarctic experiment B03 and 168 h for Antarctic experiment B04). Targets for microarray hybridization were prepared from the amoA PCR products according to Ward and Bouskill (2011), hybridized in duplicate on a microarray slide and washed as described previously (Ward and Bouskill, 2011). Washed slides were scanned using a laser scanner 4300 (Agilent Technologies, Palo Alto, CA) and analyzed with GenePix Pro 6.0 (Molecular Devices, Sunnyvale, CA). Quantification of hybridization signals was performed as described previously (Ward and Bouskill, 2011). A normalized fluorescence ratio (FRn) for each archetype was calculated by dividing the fluorescence signal of the archetype by the highest fluorescence signal within the same array. Then the FRn of each archetype from the duplicate arrays were averaged. The relative fluorescence ratio (RFR) of each archetype was calculated as the

Fig. 1. Location of experiments performed during (a) JR271 in June 2012 and (b) JR274 in January–February 2013.
chlorophyll concentrations of 0.63...of 8.186) within the Arctic ice...

JR271, pCO2 was maximal at E02 at 391.5 (pH minimum of 8.051) E04 and 9.49...the immediate surface indicative of active production at these depths. At stations E03 and E04, freshwater associated with melting ice in the near surface created a stronger defined pycnocline at approximately 38 m and 18 m respectively (inset on Fig. 3c and d) which appeared to favor nitrification and N2O production and meant that sampling at 60 m and 40 m was of waters with reduced N2O and apparently lower production rates.

Water column profiles of dissolved N2O were not determined during JR274.

3.2. OA impact on N2O concentration

Over the 48 h period of incubation N2O was produced in all bottles which had received no amendment to their carbonate chemistry. That is, there was a mean production of N2O of 5.9, 6.6, 1.4, 0.3 and 3.6 nmol L⁻¹ in two days for stations E01–E05 respectively during JR271 and of 2.2 and 1.1 nmol L⁻¹ for stations B03 and B04 respectively during JR274. In all cases the concentration of N2O decreased linearly with increasing OA (Fig. 4, Table 2) between ambient pH and pH 7.75. The observed decrease in N2O concentration between treatments ranged between 12.4% and 43.3% of the ambient condition during JR271. The largest changes in response to OA treatment were experienced at stations E01, E02 and E05 (37.7%, 43.3% and 23.8% respectively) where water sample collection was closest to the region of maximum

Table 1

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Depth (m)</th>
<th>Temp (°C)</th>
<th>NO₃ (µM)</th>
<th>NH₄⁺ (nM)</th>
<th>pH</th>
<th>pCO₂ (µatm)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>JR271</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E01</td>
<td>56.267°N</td>
<td>02.633°E</td>
<td>50</td>
<td>6.7</td>
<td>0.65</td>
<td>44</td>
<td>8.105</td>
<td>339.4</td>
<td>North Sea</td>
</tr>
<tr>
<td>E02</td>
<td>60.594°N</td>
<td>18.857°W</td>
<td>60</td>
<td>9.49</td>
<td>9.18</td>
<td>452</td>
<td>8.051</td>
<td>391.5</td>
<td>South of Iceland</td>
</tr>
<tr>
<td>E03</td>
<td>76.175°N</td>
<td>02.549°W</td>
<td>60</td>
<td>0.16</td>
<td>10.1</td>
<td>502</td>
<td>8.152</td>
<td>292.0</td>
<td>Greenland Sea</td>
</tr>
<tr>
<td>E04</td>
<td>78.353°N</td>
<td>03.664°W</td>
<td>40</td>
<td>–1.76</td>
<td>4.16</td>
<td>69</td>
<td>8.186</td>
<td>263.0</td>
<td>Greenland Sea</td>
</tr>
<tr>
<td>E05</td>
<td>72.892°N</td>
<td>26.001°E</td>
<td>60</td>
<td>6.01</td>
<td>8.76</td>
<td>178</td>
<td>8.110</td>
<td>331.4</td>
<td>East of S. Sandwich Islands</td>
</tr>
<tr>
<td>JR274</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B03</td>
<td>52.69°S</td>
<td>36.63°W</td>
<td>85</td>
<td>0.89</td>
<td>25.83</td>
<td>7.999</td>
<td>435.6</td>
<td></td>
<td>North of South Georgia</td>
</tr>
<tr>
<td>B04</td>
<td>58.08°S</td>
<td>25.93°W</td>
<td>46</td>
<td>–1.2</td>
<td>21.51</td>
<td>8.093</td>
<td>343.4</td>
<td></td>
<td>East of S. Sandwich Islands</td>
</tr>
</tbody>
</table>

Fig. 2. Surface temperature versus salinity for cruises JR271 (X) and JR274 (●). Experimental stations are represented by E01 (○), E02 (●), E03 (●), E04 (●), E05 (○), B03 (●) and B04 (○).
N₂O concentration (Fig. 3), which is assumed to be coincident with maximum production. At E03 and E04, sample water collection was approximately 35 m and 20 m below the depths of maximum N₂O, and changes in N₂O concentration with decreasing pH are less apparent (16.1% and 12.4% respectively), though still significantly correlated \((p < 0.02)\). During JR274, water column profiles of N₂O were not made and so it is not possible to relate the properties of the incubated samples to the natural distribution of N₂O. Decreases in N₂O with increasing OA were observed (Fig. 4, Table 2) though these were low relative to observations during JR271 (13.1% and 4.0% for B03 and B04 respectively).

4. AOA assemblage

In the samples from the Arctic cruise JR271, 42 of the 99 archetypes were detected at 1% of the total hybridization signal in the five experiments. MRPP analysis showed that there were no significant differences in assembly composition for comparisons among stations, between To versus Tf, or between DNA versus RNA for ambient or \(\sim 1000 \mu\text{m}\). The RFR values for all samples were averaged to evaluate the relative abundance of the archetypes. Of the 42 archetypes detected at > 1% of the signal, only three had an average RFR greater than 5%. The overwhelmingly strongest signal was due to Archetype AOA3, which represents sequences from the marine water column, and includes the cultivated ammonia-oxidizing archaeon *Nitrosopumilus maritimus*. The third and fourth largest RFRs were Archetypes AOA73 and AOA83, which represented only five and two sequences, respectively, in the Biller et al. (2012) database, all from sediments or soils. The RFR for the five archetypes that had the highest average signals across all samples are shown in Supplementary Fig. 1.

Consistent with the MRPP analysis, PCA clustered most of the samples together (Fig. 5). Three samples from E01, however, were distinct. DNA from 1TfAmbD and RNA from 1ToAmbR to 1Tf1000R had the greatest Archetype richness \((N, \text{number of Archetypes detected at } > 1\% \text{ of total signal})\) at 24, 17, and 15 Archetypes respectively. The next richest sample was 2Tf1000D with 13 significant Archetypes. In the other 27 samples, \(N\) ranged from 4 to 10.

Twenty-four of the 99 Archetypes were detected at 1% of the total hybridization signal in the two Antarctic experiments from JR274. The top three Archetypes were AOA3, AOA1 and AOA73 as above, but only AOA3 and AOA1 had an average RFR greater than 5%. The fourth strongest signal was AOA7, a marine water column clade representing 296 sequences in the Biller et al. (2012) database. The RFR for the five archetypes that had the highest average signals across all samples are shown in Supplementary Fig. 2.

PCA clustered the assemblages by station and between RNA and DNA (Fig. 6). MMRP analysis indicated that the assemblages in Experiments 3 and 4 were significantly different \((p < 0.004)\) and that the composition of the assemblages represented in the DNA was significantly different from that in the RNA \((p < 0.013)\). These differences are due to different contributions of the smaller signals; AOA1 and AOA3 were the strongest signals in all DNA and RNA samples. There were no significant differences between To

Fig. 3. Temperature and N₂O profiles for each of the experimental stations (a) E01, (b) E02, (c) E03, (d) E04, (e) E05, (f) B03, and (g) B04. In panels (c) and (d) the inset panel shows the density profile \((\sigma T)\). In all cases the depth of seawater sample collection is indicated by the dashed line. N₂O profiles were not performed during B03 and B04.
and Tf in DNA or RNA for the two experiments \((p < 0.603)\). Archetype richness was greater in Experiment B04 (average \(N = 10.3\)) than in Experiment B03 (average \(N = 7\)) and the overall range was 4–15.

5. Discussion

The AOA assemblage in both Arctic and Antarctic regions was dominated by two major archetypes that represent the marine AOA clades most often detected in seawater. Although several other archetypes were present, the dominance of AOA1 and AOA3 implies that their physiological characteristics control the rates of nitrification and their sensitivity to OA. The recently described oceanic AOA isolate (Santoro et al., 2015), Candidatus Nitrosopelagius brevis, is a member of the AOA3 archetype, suggesting it is characteristic of the most abundant AOA in the polar oceans.

There were no significant changes in AOA assemblage composition between the beginning and end of the incubation experiments, probably because all the samples were overwhelmingly dominated by the two most abundant archetypes. The incubation period was not long enough to cause significant turnover in the assemblage, even if OA did exert differential selective pressure on the assemblage members. Significant differences were found between Antarctic stations B03 and B04, and between RNA and DNA at these stations, but not among treatments. The observed differences were due to varying relative contributions of the lower abundance archetypes and therefore imply little about the differential activity or response of the assemblage as a whole, although differential effects on \(N_2O\) production among the lower abundance archetypes cannot be ruled out. This apparent lack of sensitivity of the AOA assemblage to short term OA is consistent with the previous observation of Bowen et al. (2013) that AOA assemblages are not very sensitive to small pH changes in both long (3 weeks) and short (6 days) exposures.

Sample collection for the OA manipulation experiments was directed towards the base of the euphotic zone, and samples were

Table 2

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Ambient pH</th>
<th>Manipulated pH range</th>
<th>Regression</th>
<th>(r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JR271</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E01</td>
<td>8.105</td>
<td>8.06–7.75</td>
<td>(N_2O = 22.44 \text{ pH} – 163.7)</td>
<td>0.947</td>
</tr>
<tr>
<td>E02</td>
<td>8.051</td>
<td>8.12–7.88</td>
<td>(N_2O = 29.721 \text{ pH} – 223.15)</td>
<td>0.956</td>
</tr>
<tr>
<td>E03</td>
<td>8.152</td>
<td>8.14–7.75</td>
<td>(N_2O = 5.8887 \text{ pH} – 33.616)</td>
<td>0.977</td>
</tr>
<tr>
<td>E04</td>
<td>8.186</td>
<td>8.19–7.63</td>
<td>(N_2O = 2.4324 \text{ pH} – 5.0328)</td>
<td>0.524</td>
</tr>
<tr>
<td>E05</td>
<td>8.110</td>
<td>8.11–7.79</td>
<td>(N_2O = 4.6811 \text{ pH} – 23.114)</td>
<td>0.999</td>
</tr>
<tr>
<td>JR274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B03</td>
<td>8.02</td>
<td>8.02–7.79</td>
<td>(N_2O = 9.2705 \text{ pH} – 56.879)</td>
<td>0.907</td>
</tr>
<tr>
<td>B04</td>
<td>8.11</td>
<td>8.11–7.78</td>
<td>(N_2O = 2.0183 \text{ pH} + 0.6177)</td>
<td>0.987</td>
</tr>
</tbody>
</table>

Fig. 4. Mean \(N_2O\) concentration (±1 sd) against \(\text{pH}\) during CO2 manipulation experiments during (a) JR271, with the inset showing the same \(N_2O\) data against \(\text{pCO}_2\), and (b) JR274. In both panels, squares represent the ambient concentration at T0, circles are \(N_2O\) concentration after 48 h incubation. In (a) E01 yellow, E02 turquoise, E03 red, E04 blue, E05 black. In panel (b) B03 red, B04 white.

Fig. 5. PCA of AOA during JR271. Stations are color coded, E01 = yellow, E02 = turquoise, E03 = red, E04 = blue, E05 = black. RNA (triangles); D = DNA (circles). T0 = initial; Tf = final. Amb = ambient; 1000 = highest CO2 treatment. Red crosses represent individual AOA archetypes.
incubated in the dark and so it is considered that competition from phytoplankton for available NH3 or NH4+ is likely to be low. As the nitrifying AOA community composition proved resilient to changes in OA it would seem that observed changes in N2O concentration were more likely associated to an altered NH4+/NH3 equilibrium (Hutchins et al. 2009; Beman et al., 2011). Beman et al. (2011) suggested that the decline in NH3 with increasing OA is the driving factor in the reduced rates of NH4+ oxidation observed during their study. NH3 is the substrate used in the first stage of nitrification (Ward, 2008a) and the equilibrium equations of Bell et al. (2007, 2008) indicate that at constant temperature and salinity, NH3 concentrations in seawater would decrease by 50% over a pH change from 8.1 to 7.8 (Wyatt et al., 2010). Using the equations presented by Bell et al. we estimated concentrations of NH3 from calculated pKa and in-situ determined pH and NH4+ concentration. Using a fixed value of pKa of 9.3, Beman et al. (2011) estimated that NH3 typically represented 6.3% of total NHx. At the stations sampled during JR271, using pKa determined from ambient temperature and salinity (9.9, 9.9, 10.1, 10.2, 10.0 for stations E01 to E05 respectively), we estimate a mean contribution of NH3 to NHx of 0.68 ± 0.15%. For the manipulated conditions of pH during JR271 (Table 2) the NH3 concentration is estimated to decrease to between 28% and 67% of the ambient concentration at the start of each experiment. Over wide geographic areas and conditions of pH or CO2 manipulation Beman et al. (2011) found significant correlations between percentage changes in NH3, pH and ammonium oxidation rates, as did Huesemann et al. (2002) and Kitidis et al. (2011) between pH and ammonium oxidation. During the current study we have shown similar relationships between absolute values of pH and N2O (Table 2) and in Fig. 7 between the percentage decrease in N2O during incubation experiments and the decrease in NH3 (r² = 0.735, p < 0.1) as a result of the induced shift in the NH4+/NH3 ratio. Our results indicate that changes in pH2 of between 0.23 and 0.4 (mean = 0.31) for these ocean regions, which range between northern temperate and Arctic and Antarctic sea-ice, are likely to result in decreases of dissolved N2O of between 12% and 43% (mean = 21%), as a result of a reduced NH3 regime of between 28% and 67%. These changes in pH2 are towards the higher end of those conditions projected for the late 21st century by CMIP5 simulations, e.g. Bopp et al. (2013) indicate decreases of 0.22 and 0.33 pH units for RCP6.0 and RCP8.5 respectively, whilst Gattuso et al. (2015) indicate a range of decrease of 0.14–0.4 pH units for RCP2.6 and RCP8.5 respectively. Both Beman et al. (2011) and Kitidis et al. (2011) observed a decline in ammonium oxidation rates even at their lowest manipulated conditions of OA. Our data confirm this sensitivity with decreases in dissolved N2O following treatments of between 2.3% and 23% (mean = 12%) at the lowest OA manipulations which varied between 0.06 and 0.23 (mean = 0.13) pH units.

The decreased production of N2O with increasing OA has the potential to offer a negative feedback to a warming environment by reducing the atmospheric radiative forcing contribution of N2O. This could derive from two mechanisms: a direct reduction in the flux of N2O from the ocean to the atmosphere, which could be further exacerbated by a reversal of the direction of flux, should the ocean change from source to sink of atmospheric N2O. Beman et al. (2011) estimated that their observations of decreased nitrification rates (3–44%), would lead to a global decrease in N2O production of between 0.06 and 0.83 Tg N y⁻¹ in the next 20 to 30 years. This is of particular note as it is comparable to all current N2O production from fossil fuel combustion and industrial processes (0.7 Tg N y⁻¹). By taking a similar approach and assuming that 50% of the global ocean source of N2O of 3.8 Tg N y⁻¹ (Beman et al., 2007) is produced through nitrification (Codispoti, 2010), the data from the current study indicate comparable, albeit slightly lower reductions in oceanic N2O production. For the lower range of treatments (mean pH decrease = 0.13) the estimated reduction in the ocean N2O source is between 0.04 and 0.44 Tg N y⁻¹ and for the highest treatments (mean pH decrease = 0.31) the predicted decrease ranges between 0.23 and 0.82 Tg N y⁻¹.

Our experiments have shown that OA will decrease the production of N2O in the pelagic water column. It is though clearly apparent that our future oceans will not undergo OA in isolation from other predicted changes. Warming of the oceans, decreasing oxygen levels (Gruber, 2011; Riebesell and Gattuso, 2015) and an OA induced reduction in the export of organic material to the deep ocean (reduced ballast effect – Codispoti, 2010; Gehlen et al., 2011) are all expected to impact on N2O production and release to the atmosphere. Each of these conditions offers a positive feedback to a warming environment with regards their impacts on N2O and so to a greater or lesser extent will counter the reduction in N2O caused by OA. The individual stressors are identified but combined effects may prove to be additive, synergistic or antagonistic (Riebesell and Gattuso, 2015) and the ultimate impact of these multiple stressors in the ocean offers an unknown, uncharacterised and currently unpredictable control over the release of N2O to the atmosphere.
Acknowledgments

This work was funded by NERC Grant UKOA-Ocean Acidification impacts on sea-surface, biology, biogeochemistry & climate (NE/H017259/1). We would like to thank Eric Acaster, Richard Sanders and Mark Stinchcombe for nutrient measurements; Matthew Humphreys, Eithne Tynan and Mariana Ribas-Ribas for carbonate chemistry and Mark Moore and Sophie Richier for the management of bioassay manipulations and incubations. We are grateful to Steven Biller for providing the alignment of the amoA AOAs and to Tom Bell for discussions concerning the relationship between NH4 and NH4+.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dsr2.2015.12.006.

References

Ciais, P., Sabine, C., et al., 2013. Carbon and other biogeochemical cycles. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press Cambridge, United Kingdom, New York, NY, USA.

Denneman, K.L., Brasseur, G., et al., 2007. Couplings between changes in the climate system and biogeochemistry. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Solomon, S., Qin, D., Manning, M. et al., Cambridge, New York, NY, USA.

Hansmann, D.L., Tank, A.M.G.K., et al., 2013. Observations: atmosphere and surface. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press Cambridge, United Kingdom, New York, NY, USA.

Rhein, M., Rintoul, S.R., et al., 2013. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Cambridge, United Kingdom, New York, USA.

bacteria and archaea. Methods Enzymol 496, 373–396, Vol 46: Research on Nitri-

Wyatt, N.J., Kitidis, V., et al., 2010. Effects of high CO₂ on the fixed nitrogen

Chem. 8 (4), 347–359.

Acad. Sci. USA 103 (33), 12317–12322.

Acad. Sci. USA 103 (33), 12317–12322.